
Chapter 15

Strategy Optimisation

In prior chapters we have considered how to create both an underlying predictive model (such

as with the Support Vector Machine and Random Forest Classifier) as well as a trading strategy

based upon it. Along the way we have seen that there are many parameters to such models. In

the case of an SVM we have the “tuning” parameters γ and C. In a Moving Average Crossover

trading strategy we have the parameters for the two lookback windows of the moving average

filters.

In this chapter we are going to describe optimisation methods to improve the performance

of our trading strategies by tuning the parameters in a systematic fashion. For this we will use

mechanisms from the statistical field of Model Selection, such as cross-validation and grid search.

The literature on model selection and parameter optimisation is vast and most of the methods

are somewhat beyond the scope of this book. Here we want to introduce the subject so that you

can explore more sophisticated techniques at your own pace.

15.1 Parameter Optimisation

At this stage nearly all of the trading strategies and underlying statistical models have required

one or more parameters in order to be utilised. In momentum strategies using technical indica-

tors, such as with moving averages (simple or exponential), there is a need to specify a lookback

window. The same is true of many mean-reverting strategies, which require a (rolling) lookback

window in order to calculate a regression between two time series. Particular statistical machine

learning models such as a logistic regression, SVM or Random Forest also require parameters in

order to be calculated.

The biggest danger when considering parameter optimisation is that of overfitting a model

263



264

or trading strategy. This problem occurs when a model is trained on an in sample retained slice

of training data and is optimised to perform well (by the appropriate performance measure), but

performance degrades substantially when applied to out of sample data. For instance, a trading

strategy could perform extremely well in the backtest (the in sample data) but when deployed

for live trading can be completely unprofitable.

An additional concern of parameter optimisation is that it can become very computationally

expensive. With modern computational systems this is less of an issue than it once was, due to

parallelisation and fast CPUs. However, multiple parameter optimisation can increase compu-

tational complexity by orders of magnitudes. One must be aware of this as part of the research

and development process.

15.1.1 Which Parameters to Optimise?

A statistically-based algorithmic trading model will often have many parameters and different

measures of performance. The underlying statistical learning algorithm will have its own set of

parameters. In the case of a multiple linear or logistic regression these would be the βi coefficients.

In the case of a Random Forest one such parameter would be the number of underlying decision

trees to use in the ensemble. At the trading strategy level other parameters might include entry

and exit thresholds, such as a z-score of a particular time series. The z-score itself might have

an implicit rolling lookback window. Clearly the number of parameters can be quite extensive.

In addition to parameters there are numerous means of evaluating the performance of a

statistical model and the trading strategy based upon it. We have defined concepts such as the

hit rate and the confusion matrix. Further statistical measures include estimates such as the

Mean Squared Error (MSE). These are performance measures that would be optimised at the

statistical model level, via parameters relevant to the model.

The actual trading strategy is evaluated on different criteria such as Sharpe ratio, compound

annual growth rate (CAGR) and maximum drawdown. We would need to vary entry and exit

criteria, as well as other thresholds that are not directly related to the statistical model. This

motivates the question as to which set of parameters to optimise and when.

In the following sections we are going to optimise both the statistical model parameters, at

the early research and development stage, as well as the parameters associated with a trading

strategy using an underlying optimised statistical model, on each of their respective performance

measures.
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15.1.2 Optimisation is Expensive

With multiple real-valued parameters, optimisation can rapidly become extremely expensive, as

each new parameter adds an additional spatial dimension. If we consider the example of a grid

search (to be discussed in full below), and have a single parameter α, then we might wish to

vary α within the set {0.1, 0.2, 0.3, 0.4, 0.5}. This requires 5 simulations.

If we now consider an additional parameter β, which may vary in the range {0.2, 0.4, 0.6, 0.8, 1.0},

then we will have to consider 52 = 25 simulations. Another parameter, γ, with 5 variations brings

this to 53 = 125 simulations. If each paramater had 10 separate values to be tested, this would

be equal to 103 = 1000 simulations. As can be seen the parameter search space can rapidly make

such simulations extremely expensive.

It is clear that a trade-off exists between conducting an exhaustive parameter search and

maintaining a reasonable total simulation time. While parallelism, including many-core CPUs

and graphics processing units (GPUs) and research clusters have mitigated the issue somewhat,

we still need to be careful when introducing parameters. The notion of reducing the number of

parameters is also for issue of model effectiveness, as we shall see below.

15.1.3 Overfitting

Overfitting is the process of optimising a set of parameters against a particular data set such

that an appropriate performance measure is found to be maximal, but when applied to an unseen

data set the performance measure degrades substantially. The concept is closely related to the

idea of the bias-variance dilemma.

The bias-variance dilemma concerns the situation where a statistical model has a trade-off

between being a low-bias model or a low-variance model, or a compromise between the two. Bias

refers to the difference between the models estimation of a parameter and the true “population”

value of the parameter, or erroneous assumptions in the statistical model. Variance refers to the

error from the sensitivity of the model to small fluctuations in the training set (in sample data).

In all statistical models one is simultaneously trying to minimise both the bias error and

the variance error in order to improve model accuracy. Such a situation can lead to overfitting

in models, as the training error can be substantially reduced by introducing models with more

flexibility (variation). However, such models can perform extremely poorly on new (out of

sample) data since they were essentially “fit” to the in sample data.

A common example of a high-bias, low-variance model is that of linear regression applied to

a non-linear data set. Additions of new points do not affect the regression slope dramatically
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(assuming they are not too far from the remaining data), but since the problem is inherently

non-linear, there is a systematic bias in the results by using a linear model.

A common example of a low-bias, high-variance model is that of a polynomial spline fit

applied to a non-linear data set. The parameter of the model (the degree of the polynomial)

could be adjusted to fit such a model very precisely (i.e. low-bias on the training data), but

additions of new points would almost certainly lead to the model having to modify its degree of

polynomial to fit the new data. This would make it a very high-variance model on the in sample

data. Such a model would likely have very poor predictability or inferential capability on out of

sample data.

Overfitting can also manifest itself at the trading strategy level. Consider optimising the

strategy Sharpe ratio by varying entry and exit threshold parameters. While this may improve

risk-adjusted performance in the backtest it would likely not perform similarly when the strategy

was deployed live. This is because We may have been fitting such optimisations to noise in the

historical data.

We will discuss techniques to minimise overfitting below. However one must be aware that it

is an ever-present danger in both algorithmic trading as well as statistical analysis in general.

15.2 Model Selection

In this section we are going to consider how to optimise the statistical model that will underly a

trading strategy. In the field of statistics and machine learning this is known as Model Selection.

Although an exhaustive discussion on the various model selection techniques is not presented,

some of the basic mechanisms that work well for trading strategies have been described. These

include Cross Validation and Grid Search.

15.2.1 Cross Validation

Cross Validation is a technique used to assess how a statistical model will generalise to new data

that it has not been exposed to before. Such a technique is usually used on predictive models,

such as the aforementioned supervised classifiers to predict the sign of the following daily returns

of an asset price series. Fundamentally, the goal of cross validation is to minimise error on out

of sample data without leading to an overfit model.

In this section we will describe training/test split and k-fold cross validation. We will make

use of Scikit-Learn to automatically carry out these procedures on statistical models we have

already developed.
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Train/Test Split

The simplest example of cross validation is known as a training/test split, or a 2-fold cross

validation. Once a prior historical data set is assembled (such as a daily time series of asset

prices), it is split into two components. The ratio of the split is usually varied between 0.5 and

0.8. In the latter case this means 80% of the data is used for training and 20% is used for testing.

All of the statistics of interest such as the hit rate, confusion matrix or mean-squared error are

calculated on the test set, which has not been used within the training process.

To carry out this process in Python with Scikit-Learn we can use the sklearn cross_validation

train_test_split method. We will continue with our model developed within the chapter on

Forecasting. In particular we are going to modify forecast.py and create a new file called

train_test_split.py. We will need to add the new import to the list of imports:

# train_test_split.py

import datetime

import sklearn

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.discriminant_analysis import (

LinearDiscriminantAnalysis

as LDA,

QuadraticDiscriminantAnalysis

as QDA

)

from sklearn.metrics import confusion_matrix

from sklearn.svm import LinearSVC, SVC

from create_lagged_series import create_lagged_series

In forecast.py we originally split the data based on a particular date within the time series:

# forecast.py

..
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# The test data is split into two parts: Before and after 1st Jan 2017.

start_test = datetime.datetime(2017,1,1)

# Create training and test sets

X_train = X[X.index < start_test]

X_test = X[X.index >= start_test]

y_train = y[y.index < start_test]

y_test = y[y.index >= start_test]

..

This can be replaced with the method train_test_split from Scikit-Learn in the train_test_split.py

file. For completeness, the full __main__ method is provided below:

# train_test_split.py

if __name__ == "__main__":

# Create a lagged series of the S&P500 US stock market index

snpret = create_lagged_series(

"SPY", datetime.datetime(2016,1,10),

datetime.datetime(2017,12,31), lags=5

)

# Use the prior two days of returns as predictor

# values, with direction as the response

X = snpret[["Lag1","Lag2"]]

y = snpret["Direction"]

# Train/test split

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.8, random_state=42

)

# Create the (parametrised) models

print("Hit Rates/Confusion Matrices:\n")
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models = [("LR", LogisticRegression()),

("LDA", LDA()),

("QDA", QDA()),

("LSVC", LinearSVC()),

("RSVM", SVC(

C=1000000.0, cache_size=200, class_weight=None,

coef0=0.0, degree=3, gamma=0.0001, kernel=’rbf’,

max_iter=-1, probability=False, random_state=None,

shrinking=True, tol=0.001, verbose=False)

),

("RF", RandomForestClassifier(

n_estimators=1000, criterion=’gini’,

max_depth=None, min_samples_split=2,

min_samples_leaf=1, max_features=’auto’,

bootstrap=True, oob_score=False, n_jobs=1,

random_state=None, verbose=0)

)]

# Iterate through the models

for m in models:

# Train each of the models on the training set

m[1].fit(X_train, y_train)

# Make an array of predictions on the test set

pred = m[1].predict(X_test)

# Output the hit-rate and the confusion matrix for each model

print("%s:\n%0.3f" % (m[0], m[1].score(X_test, y_test)))

print("%s\n" % confusion_matrix(pred, y_test))

Notice that we have picked the ratio of the training set to be 80% of the data, leaving the

testing data with only 20%. In addition we have specified a random_state to randomise the

sampling within the selection of data. This means that the data is not sequentially divided
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chronologically, but rather is sampled randomly.

The results of the cross-validation on the model are as follows (yours will likely appear slightly

different due to the nature of the fitting procedure):

Hit Rates/Confusion Matrices:

LR:

0.574

[[ 92 94]

[ 76 137]]

LDA:

0.574

[[ 95 97]

[ 73 134]]

QDA:

0.529

[[109 129]

[ 59 102]]

LSVC:

0.584

[[ 92 90]

[ 76 141]]

RSVM:

0.591

[[ 82 77]

[ 86 154]]

RF:

0.544

[[ 94 108]
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[ 74 123]]

It can be seen that the hit rates are substantially lower than those found in the aforemen-

tioned forecasting chapter. Consequently we can likely conclude that the particular choice of

training/test split lead to an over-optimistic view of the predictive capability of the classifier.

The next step is to increase the number of times a cross-validation is performed in order to

minimise any potential overfitting. For this we will use k-fold cross validation.

K-Fold Cross Validation

Rather than partitioning the set into a single training and test set, we can use k-fold cross

validation to randomly partition the set into k equally sized subsamples. For each iteration (of

which there are k), one of the k subsamples is retained as a test set, while the remaining k − 1

subsamples together form a training set. A statistical model is then trained on each of the k

folds and its performance evaluated on its specific k-th test set.

The purpose of this is to combine the results of each model into an emsemble by means of

averaging the results of the prediction (or otherwise) to produce a single prediction. The main

benefit of using k-fold cross validation is that every predictor within the original data set is used

only once for both training and testing.

This motivates a question as to how to choose k, which is now another parameter! Generally,

k = 10 is used but one can also perform another analysis to choose an optimal value of k.

We will now make use of the cross_validation module of Scikit-Learn to obtain the KFold

k-fold cross validation object. We create a new file called k_fold_cross_val.py, which is a

copy of train_test_split.py and modify the imports by adding the following line:

# k_fold_cross_val.py

import datetime

import pandas as pd

import sklearn

from sklearn import cross_validation

from sklearn.metrics import confusion_matrix

from sklearn.svm import SVC

from create_lagged_series import create_lagged_series
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We then need to make changes to the __main__ function by removing the train_test_split

method and replacing it with an instance of KFold. It takes three keyword argument parameters.

The first, n_splits, is the number of folds K, which in this case is 10. shuffle and

random_state control the randomisation of the samples.

As before in forecast.py and train_test_split.py we obtain the lagged series of the

S&P500. We then create a set of vectors of predictors (X) and responses (y). We then utilise

the KFold object and iterate over it. During each iteration we create the training and testing

sets for each of the X and y vectors. These are then fed into a radial support vector machine

with identical parameters to the aforementioned files and the model is fit.

Finally the hit rate and confusion matrix for each instance of the SVM is output.

# k_fold_cross_val.py

if __name__ == "__main__":

# Create a lagged series of the S&P500 US stock market index

snpret = create_lagged_series(

"SPY", dt(2016,1,10),

dt(2017,12,31), lags=5

)

# Use the prior two days of returns as predictor

# values, with direction as the response

X = snpret[["Lag1","Lag2"]]

y = snpret["Direction"]

# Create a k-fold cross validation object

kf = KFold(

n_splits=10, shuffle=True, random_state=42

)

# Use the kf object to create index arrays that

# state which elements have been retained for training

# and which elements have beenr retained for testing

# for each k-element iteration
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for train_index, test_index in kf.split(X):

X_train = X.loc[X.index[train_index]]

X_test = X.loc[X.index[test_index]]

y_train = y.loc[y.index[train_index]]

y_test = y.loc[y.index[test_index]]

# In this instance only use the

# Radial Support Vector Machine (SVM)

print("Hit Rate/Confusion Matrix:")

model = SVC(

C=1000000.0, cache_size=200, class_weight=None,

coef0=0.0, degree=3, gamma=0.0001, kernel=’rbf’,

max_iter=-1, probability=False, random_state=None,

shrinking=True, tol=0.001, verbose=False

)

# Train the model on the retained training data

model.fit(X_train, y_train)

# Make an array of predictions on the test set

pred = model.predict(X_test)

# Output the hit-rate and the confusion matrix for each model

print("%0.3f" % model.score(X_test, y_test))

print("%s\n" % confusion_matrix(pred, y_test))

The output of the code is as follows:

Hit Rate/Confusion Matrix:

0.580

[[ 3 0]

[21 26]]

Hit Rate/Confusion Matrix:

0.560
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[[ 1 0]

[22 27]]

Hit Rate/Confusion Matrix:

0.680

[[ 3 7]

[ 9 31]]

Hit Rate/Confusion Matrix:

0.600

[[ 3 1]

[19 27]]

Hit Rate/Confusion Matrix:

0.660

[[ 1 3]

[14 32]]

Hit Rate/Confusion Matrix:

0.440

[[ 0 1]

[27 22]]

Hit Rate/Confusion Matrix:

0.540

[[ 3 4]

[19 24]]

Hit Rate/Confusion Matrix:

0.540

[[ 3 2]

[21 24]]
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Hit Rate/Confusion Matrix:

0.490

[[ 2 0]

[25 22]]

Hit Rate/Confusion Matrix:

0.551

[[ 0 1]

[21 27]]

It is the clear that the hit rate and confusion matrices vary dramatically across the various

folds. This is indicative that the model is prone to overfitting, on this particular dataset. A

remedy for this is to use significantly more data, either at a higher frequency or over a longer

duration.

In order to utilise this model in a trading strategy it would be necessary to combine each of

these individually trained classifiers (i.e. each of the K objects) into an ensemble average and

then use that combined model for classification within the strategy.

Note that technically it is not appropriate to use simple cross-validation techniques on tem-

porally ordered data (i.e. time-series). There are more sophisticated mechanisms for coping with

autocorrelation in this fashion, but here we wanted to highlight the approach so we have used time

series data for simplicity.

15.2.2 Grid Search

We have so far seen that k-fold cross validation helps us to avoid overfitting in the data by

performing validation on every element of the sample. We now turn our attention to optimising

the hyper-parameters of a particular statistical model. Such parameters are those not directly

learnt by the model estimation procedure. For instance, C and γ for a support vector machine.

In essence they are the parameters that we need to specify when calling the initialisation of each

statistical model. For this procedure we will use a process known as a grid search.

The basic idea is to take a range of parameters and assess the performance of the statistical

model on each parameter element within the range. To achieve this in Scikit-Learn we can create

a ParameterGrid. Such an object will produce a list of Python dictionaries that each contain a

parameter combination to be fed into a statistical model.

An example code snippet that produces a parameter grid, for parameters related to a support
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vector machine, is given below:

>>> from sklearn.grid_search import ParameterGrid

>>> param_grid = {’C’: [1, 10, 100, 1000], ’gamma’: [0.001, 0.0001]}

>>> list(ParameterGrid(param_grid))

[{’C’: 1, ’gamma’: 0.001},

{’C’: 1, ’gamma’: 0.0001},

{’C’: 10, ’gamma’: 0.001},

{’C’: 10, ’gamma’: 0.0001},

{’C’: 100, ’gamma’: 0.001},

{’C’: 100, ’gamma’: 0.0001},

{’C’: 1000, ’gamma’: 0.001},

{’C’: 1000, ’gamma’: 0.0001}]

Now that we have a suitable means of generating a ParameterGrid we need to feed this into

a statistical model iteratively to search for an optimal performance score. In this case we are

going to seek to maximise the hit rate of the classifier.

The GridSearchCV mechanism from Scikit-Learn allows us to perform the actual grid search.

In fact, it allows us to perform not only a standard grid search but also a cross validation scheme

at the same time.

We are now going to create a new file, grid_search.py, that once again uses create_lagged_series.py

and a support vector machine to perform a cross-validated hyperparameter grid search. To this

end we must import the correct libraries:

# grid_search.py

import datetime

import sklearn

from sklearn import cross_validation

from sklearn.cross_validation import train_test_split

from sklearn.grid_search import GridSearchCV

from sklearn.metrics import classification_report

from sklearn.svm import SVC
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from create_lagged_series import create_lagged_series

As before with k_fold_cross_val.py we create a lagged series and then use the previous

two days of returns as predictors. We initially create a training/test split such that 50% of the

data can be used for training and cross validation while the remaining data can be “held out” for

evaluation.

Subsequently we create the tuned_parameters list, which contains a single dictionary de-

noting the parameters we wish to test over. This will create a cartesian product of all parameter

lists, i.e. a list of pairs of every possible parameter combination.

Once the parameter list is created we pass it to the GridSearchCV class, along with the

type of classifier that we’re interested in (namely a radial support vector machine), with a k-fold

cross-validation k-value of 10.

Finally, we train the model and output the best estimator and its associated hit rate scores.

In this way we have not only optimised the model parameters via cross validation but we have

also optimised the hyperparameters of the model via a parametrised grid search, all in one class!

Such succinctness of the code allows significant experimentation without being bogged down by

excessive “data wrangling”.

if __name__ == "__main__":

# Create a lagged series of the S&P500 US stock market index

snpret = create_lagged_series(

"SPY", dt(2016,1,10),

dt(2017,12,31), lags=5

)

# Use the prior two days of returns as predictor

# values, with direction as the response

X = snpret[["Lag1","Lag2"]]

y = snpret["Direction"]

# Train/test split

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.5, random_state=42

)
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# Set the parameters by cross-validation

tuned_parameters = [

{’kernel’: [’rbf’], ’gamma’: [1e-3, 1e-4], ’C’: [1, 10, 100, 1000]}

]

# Perform the grid search on the tuned parameters

model = GridSearchCV(SVC(C=1), tuned_parameters, cv=10)

model.fit(X_train, y_train)

print("Optimised parameters found on training set:")

print(model.best_estimator_, "\n")

print("Grid scores calculated on training set:")

for params, mean_score, scores in model.grid_scores_:

print("%0.3f for %r" % (mean_score, params))

The output of the grid search cross validation procedure is as follows:

Optimised parameters found on training set:

SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.001,

kernel=’rbf’, max_iter=-1, probability=False, random_state=None,

shrinking=True, tol=0.001, verbose=False)

Grid scores calculated on training set:

0.514 {’C’: 1, ’gamma’: 0.001, ’kernel’: ’rbf’}

0.514 {’C’: 1, ’gamma’: 0.0001, ’kernel’: ’rbf’}

0.518 {’C’: 10, ’gamma’: 0.001, ’kernel’: ’rbf’}

0.514 {’C’: 10, ’gamma’: 0.0001, ’kernel’: ’rbf’}

0.591 {’C’: 100, ’gamma’: 0.001, ’kernel’: ’rbf’}

0.522 {’C’: 100, ’gamma’: 0.0001, ’kernel’: ’rbf’}

0.587 {’C’: 1000, ’gamma’: 0.001, ’kernel’: ’rbf’}

0.590 {’C’: 1000, ’gamma’: 0.0001, ’kernel’: ’rbf’}

As we can see γ = 0.001 and C = 100 provides the best hit rate, on the validation set, for

this particular radial kernel support vector machine. This model could now form the basis of a

forecasting-based trading strategy, as we have previously demonstrated in the prior chapter.
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15.3 Optimising Strategies

Up until this point we have concentrated on model selection and optimising the underlying

statistical model that might form the basis of a trading strategy. However a predictive model

and a functioning profitable algorithmic strategy are two different entities. We now turn our

attention to optimising parameters that have a direct effect on profitability and risk metrics.

To achieve this we are going to make use of the event-driven backtesting software that was

described in a previous chapter. We will consider a particular strategy that has three parameters

associated with it and search through the space formed by the cartesian product of parameters,

using a grid search mechanism. We will then attempt to maximise particular metrics such as the

Sharpe Ratio or minimise others such as the maximum drawdown.

15.3.1 Intraday Mean Reverting Pairs

The strategy of interest to us in this section is the “Intraday Mean Reverting Equity Pairs Trade”

using the energy equities AREX and WLL. It contains three parameters that we are capable of

optimising: The linear regression lookback period, the residuals z-score entry threshold and the

residuals z-score exit threshold.

We will consider a range of values for each parameter and then calculate a backtest for the

strategy across each of these ranges outputting the total return, Sharpe ratio and drawdown

characteristics of each simulation to a CSV file for each parameter set. This will allow us to

ascertain an optimised Sharpe or minimised max drawdown for our trading strategy.

15.3.2 Parameter Adjustment

Since the event-driven backtesting software is quite CPU-intensive, we will restrict the parameter

range to three values per parameter. This will give us a total of 33 = 27 separate simulations to

carry out. The parameter ranges are listed below:

• OLS Lookback Window - wl ∈ {50, 100, 200}

• Z-Score Entry Threshold - zh ∈ {2.0, 3.0, 4.0}

• Z-Score Exit Threshold - zl ∈ {0.5, 1.0, 1.5}

To carry out the set of simulations a cartesian product of all three ranges will be calculated

and then the simulation will be carried out for each combination of parameters.

The first task is to modify the intraday_mr.py file to include the product method from the

itertools library:
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# intraday_mr.py

..

from itertools import product

..

We can then modify the __main__ method to include the generation of a parameter list for

all three of the parameters discussed above.

The first task is to create the actual paramater ranges for the OLS lookback window, the

z-score entry threshold and the z-score exit threshold. Each of these has three separate variations

leading to a total of 27 simulations.

Once the ranges are created the itertools.product method is used to create a cartesian

product of all variations, which is then fed into a list of dictionaries to ensure that the correct

keyword arguments are passed to the Strategy object.

Finally the backtest is instantiated with the strat_params_list forming the final keyword

argument:

if __name__ == "__main__":

csv_dir = ’/path/to/your/csv/file’ # CHANGE THIS!

symbol_list = [’AREX’, ’WLL’]

initial_capital = 100000.0

heartbeat = 0.0

start_date = datetime.datetime(2007, 11, 8, 10, 41, 0)

# Create the strategy parameter grid

# using the itertools cartesian product generator

strat_lookback = [50, 100, 200]

strat_z_entry = [2.0, 3.0, 4.0]

strat_z_exit = [0.5, 1.0, 1.5]

strat_params_list = list(product(

strat_lookback, strat_z_entry, strat_z_exit

))

# Create a list of dictionaries with the correct

# keyword/value pairs for the strategy parameters
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strat_params_dict_list = [

dict(ols_window=sp[0], zscore_high=sp[1], zscore_low=sp[2])

for sp in strat_params_list

]

# Carry out the set of backtests for all parameter combinations

backtest = Backtest(

csv_dir, symbol_list, initial_capital, heartbeat,

start_date, HistoricCSVDataHandlerHFT, SimulatedExecutionHandler,

PortfolioHFT, IntradayOLSMRStrategy,

strat_params_list=strat_params_dict_list

)

backtest.simulate_trading()

The next step is to modify the Backtest object in backtest.py to be able to handle multiple

parameter sets. We need to modify the _generate_trading_instances method to have an

argument that represents the particular parameter set on creation of a new Strategy object:

# backtest.py

..

def _generate_trading_instances(self, strategy_params_dict):

"""

Generates the trading instance objects from

their class types.

"""

print(

"Creating DataHandler, Strategy, Portfolio and "

"ExecutionHandler for strategy parameter "

"list: %s..." % strategy_params_dict

)

self.data_handler = self.data_handler_cls(

self.events, self.csv_dir, self.symbol_list, self.header_strings

)

self.strategy = self.strategy_cls(
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self.data_handler, self.events, **strategy_params_dict

)

self.portfolio = self.portfolio_cls(

self.data_handler, self.events, self.start_date,

self.num_strats, self.periods, self.initial_capital

)

self.execution_handler = self.execution_handler_cls(self.events)

..

This method is now called within a strategy parameter list loop, rather than at construction

of the Backtest object. While it may seem wasteful to recreate all of the data handlers, event

queues and portfolio objects for each parameter set, it ensures that all of the iterators have been

reset and that we are truly starting with a “clean slate” for each simulation.

The next task is to modify the simulate_tradingmethod to loop over all variants of strategy

parameters. The method creates an output CSV file that is used to store parameter combina-

tions and their particular performance metrics. This will allow us later to plot performance

characteristics across parameters.

The method loops over all of the strategy parameters and generates a new trading instance on

every simulation. The backtest is then executed and the statistics calculated. These are stored

and output into the CSV file. Once the simulation ends, the output file is closed:

# backtest.py

..

def simulate_trading(self):

"""

Simulates the backtest and outputs portfolio performance.

"""

out = open("output/opt.csv", "w")

spl = len(self.strat_params_list)

for i, sp in enumerate(self.strat_params_list):

print("Strategy %s out of %s..." % (i+1, spl))

self._generate_trading_instances(sp)

self._run_backtest()
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stats = self._output_performance()

pprint.pprint(stats)

tot_ret = float(stats[0][1].replace("%",""))

cagr = float(stats[1][1].replace("%",""))

sharpe = float(stats[2][1])

max_dd = float(stats[3][1].replace("%",""))

dd_dur = int(stats[4][1])

out.write(

"%s,%s,%s,%s,%s,%s,%s,%s\n" % (

sp["ols_window"], sp["zscore_high"], sp["zscore_low"],

tot_ret, cagr, sharpe, max_dd, dd_dur

)

)

out.close()

On the desktop system used for these experiments the process takes approximately three

hours. This is because there are 27 parameter simulations across more than 600,000 data points

per simulation. Parallelisation of the backtesting system is beyond the scope of this book, but

concurrent running of simulation jobs would make the process a lot faster. The output of the

current parameter study is given below. The columns are given by OLS Lookback, ZScore High,

ZScore Low, Total Return (%), CAGR (%), Sharpe, Max DD (%), DD Duration (minutes):

50,2.0,0.5,213.96,20.19,1.63,42.55,255568

50,2.0,1.0,264.9,23.13,2.18,27.83,160319

50,2.0,1.5,167.71,17.15,1.63,60.52,293207

50,3.0,0.5,298.64,24.9,2.82,14.06,35127

50,3.0,1.0,324.0,26.14,3.61,9.81,33533

50,3.0,1.5,294.91,24.71,3.71,8.04,31231

50,4.0,0.5,212.46,20.1,2.93,8.49,23920

50,4.0,1.0,222.94,20.74,3.5,8.21,28167

50,4.0,1.5,215.08,20.26,3.66,8.25,22462

100,2.0,0.5,378.56,28.62,2.54,22.72,74027
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100,2.0,1.0,374.23,28.43,3.0,15.71,89118

100,2.0,1.5,317.53,25.83,2.93,14.56,80624

100,3.0,0.5,320.1,25.95,3.06,13.35,66012

100,3.0,1.0,307.18,25.32,3.2,11.57,32185

100,3.0,1.5,306.13,25.27,3.52,7.63,33930

100,4.0,0.5,231.48,21.25,2.82,7.44,29160

100,4.0,1.0,227.54,21.01,3.11,7.7,15400

100,4.0,1.5,224.43,20.83,3.33,7.73,18584

200,2.0,0.5,461.5,31.97,2.98,19.25,31024

200,2.0,1.0,461.99,31.99,3.64,10.53,64793

200,2.0,1.5,399.75,29.52,3.57,10.74,33463

200,3.0,0.5,333.36,26.58,3.07,19.24,56569

200,3.0,1.0,325.96,26.23,3.29,10.78,35045

200,3.0,1.5,284.12,24.15,3.21,9.87,34294

200,4.0,0.5,245.61,22.06,2.9,12.52,51143

200,4.0,1.0,223.63,20.78,2.93,9.61,40075

200,4.0,1.5,203.6,19.55,2.96,7.16,40078

We can see that for this particular study the parameter values of wl = 50, zh = 3.0 and

zl = 1.5 provide the best Sharpe ratio at S = 3.71. For this Sharpe ratio we have a total return

of 294.91% and a maximum drawdown of 8.04%. The best total return of 461.99%, albeit with a

maximum drawdown of 10.53% is given by the parameter set of wl = 200, zh = 2.0 and zl = 1.0.

15.3.3 Visualisation

As a final task in strategy optimisation, we are now going to visualise the performance charac-

teristics of the backtester using Matplotlib, which is an extremely useful step when carrying out

initial strategy research. Unfortunately we are in the situation where we have a three-dimensional

problem and so performance visualisation is not straightforward! However, there are some partial

remedies to the situation.

Firstly, we could fix the value of one parameter and take a “parameter slice” through the

remainder of the “data cube”. For instance we could fix the lookback window to be 100 and

then see how the variation in z-score entry and exit thresholds affects the Sharpe Ratio or the

maximum drawdown.

To achieve this we will use Matplotlib. We will read the output CSV and reshape the data
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such that we can visualise the results.

Sharpe/Drawdown Heatmap

We will fix the lookback period of wl = 100 and then generate a 3× 3 grid and “heatmap” of the

Sharpe ratio and maximum drawdown for the variation in z-score thresholds.

In the following code we import the output CSV file. The first task is to filter out the lookback

periods that are not of interest (wl ∈ {50, 200}). Then we reshape the remaining performance

data into two 3 × 3 matrices. The first represents the Sharpe ratio for each z-score threshold

combination while the second represents maximum drawdown.

Here is the code for creating the Sharpe Ratio heatmap. We first import Matplotlib and

NumPy. Then we define a function called create_data_matrix which reshapes the Sharpe

Ratio data into a 3 × 3 grid. Within the __main__ function we open the CSV file (make sure

to change the path on your system!) and exclude any lines not referencing a lookback period of

100.

We then create a blue-shaded heatmap and apply the correct row/column labels using the

z-score thresholds. Subsequently we place the actual value of the Sharpe Ratio onto the heatmap.

Finally, we set the ticks, labels, title and then plot the heatmap:

# plot_sharpe.py

import matplotlib.pyplot as plt

import numpy as np

def create_data_matrix(csv_ref, col_index):

data = np.zeros((3, 3))

for i in range(0, 3):

for j in range(0, 3):

data[i][j] = float(csv_ref[i*3+j][col_index])

return data

if __name__ == "__main__":

# Open the CSV file and obtain only the lines
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# with a lookback value of 100

csv_file = open("/path/to/opt.csv", "r").readlines()

csv_ref = [

c.strip().split(",")

for c in csv_file if c[:3] == "100"

]

data = create_data_matrix(csv_ref, 5)

fig, ax = plt.subplots()

heatmap = ax.pcolor(data, cmap=plt.cm.Blues)

row_labels = [0.5, 1.0, 1.5]

column_labels = [2.0, 3.0, 4.0]

for y in range(data.shape[0]):

for x in range(data.shape[1]):

plt.text(x + 0.5, y + 0.5, ’%.2f’ % data[y, x],

horizontalalignment=’center’,

verticalalignment=’center’,

)

plt.colorbar(heatmap)

ax.set_xticks(np.arange(data.shape[0])+0.5, minor=False)

ax.set_yticks(np.arange(data.shape[1])+0.5, minor=False)

ax.set_xticklabels(row_labels, minor=False)

ax.set_yticklabels(column_labels, minor=False)

plt.suptitle(’Sharpe Ratio Heatmap’, fontsize=18)

plt.xlabel(’Z-Score Exit Threshold’, fontsize=14)

plt.ylabel(’Z-Score Entry Threshold’, fontsize=14)

plt.show()

The plot for the maximum drawdown is almost identical with the exception that we use a

red-shaded heatmap and alter the column index in the create_data_matrix function to use
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the maximum drawdown percentage data.

# plot_drawdown.py

import matplotlib.pyplot as plt

import numpy as np

def create_data_matrix(csv_ref, col_index):

data = np.zeros((3, 3))

for i in range(0, 3):

for j in range(0, 3):

data[i][j] = float(csv_ref[i*3+j][col_index])

return data

if __name__ == "__main__":

# Open the CSV file and obtain only the lines

# with a lookback value of 100

csv_file = open("/path/to/opt.csv", "r").readlines()

csv_ref = [

c.strip().split(",")

for c in csv_file if c[:3] == "100"

]

data = create_data_matrix(csv_ref, 6)

fig, ax = plt.subplots()

heatmap = ax.pcolor(data, cmap=plt.cm.Reds)

row_labels = [0.5, 1.0, 1.5]

column_labels = [2.0, 3.0, 4.0]

for y in range(data.shape[0]):

for x in range(data.shape[1]):

plt.text(x + 0.5, y + 0.5, ’%.2f%%’ % data[y, x],
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horizontalalignment=’center’,

verticalalignment=’center’,

)

plt.colorbar(heatmap)

ax.set_xticks(np.arange(data.shape[0])+0.5, minor=False)

ax.set_yticks(np.arange(data.shape[1])+0.5, minor=False)

ax.set_xticklabels(row_labels, minor=False)

ax.set_yticklabels(column_labels, minor=False)

plt.suptitle(’Maximum Drawdown Heatmap’, fontsize=18)

plt.xlabel(’Z-Score Exit Threshold’, fontsize=14)

plt.ylabel(’Z-Score Entry Threshold’, fontsize=14)

plt.show()

The heatmaps produced from the above snippets are given in Fig 15.3.3 and Fig 15.3.3:

Figure 15.1: Sharpe Ratio heatmap for z-score entry/exit thresholds

At wl = 100 the differences between the smallest and largest Sharpe Ratios, as well as the

smallest and largest maximum drawdowns, is readily apparent. The Sharpe Ratio is optimised

for larger entry and exit thresholds, while the drawdown is minimised in the same region. The



289

Figure 15.2: Maximum Drawdown heatmap for z-score entry/exit thresholds

Sharpe Ratio and maximum drawdown are at their worst when both the entry and exit thresholds

are low.

This clearly motivates us to consider using relatively high entry and exit thresholds for this

strategy when deployed into live trading.


