
Chapter 14

Random Number Generation and

Statistical Distributions

In this chapter we are going to construct classes to help us encapsulate the generation of random

numbers. Random number generators (RNG) are an essential tool in quantitative finance as

they are necessary for Monte Carlo simulations that power numerical option pricing techniques.

Other chapters have so far used RNGs in a procedural manner. In particular, we have utilised

the Box-Muller technique to generate one or more random variables distributed as a standard

Gaussian.

14.1 Overview

We will now show how to construct a random number generator class hierarchy. This allows

us to separate the generation of random numbers from the Monte Carlo solvers that make use

of them. It helps us reduce the amount of code we will need to write in the future, increases

extensibility by allowing easy creation of additional random number generators and makes the

code more maintainable.

There are further reasons to write our own random number generators:

• It allows us to make use of pseudo-random numbers. These are sequences of numbers

that possess the correct statistical properties to “emulate” random numbers in order to im-

prove the convergence rates of Monte Carlo simulations. The interface for random numbers

and pseudo-random numbers is identical and we can hide away the details in the specific

classes. In particular we can implement low-discrepancy numbers and anti-thetic sampling
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in this manner.

• Relying on the rand function provided with the C++ standard is unreliable. Not only is

rand implementation specific, because it varies across multiple vendor compilers, but we are

unaware of the efficiency of each implementation. This leads to difficulties in cross-platform

testing as we cannot guarantee reproducibility.

• We are able to provide multiple separate streams of random numbers for different

parts of our running program. The seed for the rand function, srand, is a global variable

and hence will affect all components of our program, which is usually unwanted behaviour.

By implementing our own RNG we avoid this issue.

14.2 Random Number Generator Class Hierarchy

Our random number generators will be formed from an inheritance hierarchy. We have already

used this method when constructing PayOff classes for option pay-off functions. To form the

hierarchy we will create an abstract base class that specifies the interface to the random number

generator. All subsequent generators will inherit the interface from this class.

The primary considerations of this interface are as follows:

• Quantity or dimension of the generator: Many of the options pricers we have already

created require more than a single random number in order to be accurately priced. This

is the case for path-dependent options such as Asians, Barriers and Lookbacks. Thus our

first consideration is to make sure that the generator provides a vector of random numbers,

with the dimension specified at the creation of the instance.

• The supported statistical distributions from which to draw random variables: For op-

tions pricing, the two main statistical distributions of interest will be the uniform distri-

bution and the standard normal distribution (i.e. the “Gaussian” distribution). Gaussian

random draws are calculated from uniform random draws. We can use the statistical

classes in order to obtain random draws from any particular distribution we wish, without

modifying the RNG.

• We will need methods to support obtaining and setting the random seed, so that we can

control which random numbers are generated and to ensure reproducibility across separate

runs and platforms.
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With those considerations in mind, let’s create a simple abstract base class for our random

number generator, in the file random.h:

#ifndef RANDOM H

#define RANDOM H

#include <vector>

class RandomNumberGenerator {

protected :

unsigned long i n i t s e e d ; // I n i t i a l random seed va lue

unsigned long cu r s e ed ; // Current random seed va lue

unsigned long num draws ; // Dimens iona l i ty o f the RNG

public :

RandomNumberGenerator (unsigned long num draws , unsigned long i n i t s e e d )

: num draws ( num draws ) , i n i t s e e d ( i n i t s e e d ) , cu r s e ed ( i n i t s e e d )

{} ;

virtual ˜RandomNumberGenerator ( ) {} ;

virtual unsigned long get random seed ( ) const { return cu r s e ed ; }

virtual void set random seed (unsigned long s e ed ) { cu r s e ed = seed ; }

virtual void re se t random seed ( ) { cu r s e ed = i n i t s e e d ; }

virtual void set num draws (unsigned long num draws ) { num draws =

num draws ; }

// Obtain a random in t e g e r ( needed f o r c r ea t i n g random uniforms )

virtual unsigned long get random integer ( ) = 0 ;

// F i l l s a v e c t o r wi th uniform random va r i a b l e s on the open i n t e r v a l

(0 ,1)

virtual void get uni form draws ( std : : vector<double>& draws ) = 0 ;

} ;

#endif

Let’s run through the code. Firstly, note that we have three protected member variables

(which are all large unsigned long integers). cur seed is the RNG current seed value. init seed is



192

the initial seed value, which does not change once the RNG has been instantiated. The current

seed can only be reset to the initial seed. num draws represents the dimensionality of the random

number generator (i.e. how many random draws to create):

protected :

unsigned long i n i t s e e d ; // I n i t i a l random seed va lue

unsigned long cu r s e ed ; // Current random seed va lue

unsigned long num draws ; // Dimens iona l i ty o f the RNG

Since we’re creating an abstract base class is it a good idea to use protected data?

This is actually a contentious issue. Sometimes protected variables are frowned upon. Instead,

it is argued that all data should be private and that accessor methods should be used. However,

inherited classes -are- clients of the base class, just as “public” clients of the classes are. The

alternative argument is that it is extremely convenient to use protected member data because it

reduces the amount of cluttered accessor and modifier methods. For brevity protected member

data has been used here.

Although the class will never be instantiated directly, it still has a constructor which must be

called to populate the protected members. We use a member initialisation list to carry this out.

We also create an empty method implementation for the constructor ({}), avoiding the need to

create a random.cpp source file. Notice that we’re setting the current seed to the initial seed as

well.

RandomNumberGenerator (unsigned long num draws , unsigned long i n i t s e e d )

: num draws ( num draws ) , i n i t s e e d ( i n i t s e e d ) , cu r s e ed ( i n i t s e e d )

{} ;

We then have four separate access and reset methods (all virtual), which get, set and reset

the random seed and another which resets the number of random draws. They are all directly

implemented in the header file, once again stopping us from needing to create a random.cpp

source file:

virtual unsigned long get random seed ( ) const { return cu r s e ed ; }

virtual void set random seed (unsigned long s e ed ) { cu r s e ed = seed ; }

virtual void re se t random seed ( ) { cu r s e ed = i n i t s e e d ; }

virtual void set num draws (unsigned long num draws ) { num draws =

num draws ; }

We now need a method to create a random integer. This is because subsequent random

number generators will rely on transforming random unsigned longs into uniform variables on
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the open interval (0, 1). The method is declared pure virtual as different RNGs will implement

this differently. We don’t want to “force” an approach on future clients of our code:

// Obtain a random in t e g e r ( needed f o r c r ea t i n g random uniforms )

virtual unsigned long get random integer ( ) = 0 ;

Finally we fill a supplied vector with uniform random draws. This vector will then be passed

to a statistical distribution class in order to generate random draws from any chosen distribution

that we implement. In this way we are completely separating the generation of the uniform

random variables (on the open interval (0, 1)) and the draws from various statistical distributions.

This maximises code re-use and aids testing:

// F i l l s a v e c t o r wi th uniform random va r i a b l e s on the open i n t e r v a l (0 ,1)

virtual void get uni form draws ( std : : vector<double>& draws ) = 0 ;

Our next task is to implement a linear congruential generator algorithm as a means for

creating our uniform random draws.

14.2.1 Linear Congruential Generators

Linear congruential generators (LCG) are a form of random number generator based on the

following general recurrence relation:

xk+1 = g · xkmodn

Where n is a prime number (or power of a prime number), g has high multiplicative order

modulo n and x0 (the initial seed) is co-prime to n. Essentially, if g is chosen correctly, all

integers from 1 to n − 1 will eventually appear in a periodic fashion. This is why LCGs are

termed pseudo-random. Although they possess “enough” randomness for our needs (as n can be

large), they are far from truly random. We won’t dwell on the details of the mathematics behind

LCGs, as we will not be making strong use of them going forward in our studies. However,

most system-supplied RNGs make use of LCGs, so it is worth being aware of the algorithm.

The listing below (lin con gen .cpp) contains the implementation of the algorithm. If you want to

learn more about how LCGs work, take a look at Numerical Recipes[20].
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14.2.2 Implementing a Linear Congruential Generator

With the mathematical algorithm described, it is straightforward to create the header file listing

(lin con gen .h) for the Linear Congruential Generator. The LCG simply inherits from the RNG

abstract base class, adds a private member variable called max multiplier (used for pre-computing

a specific ratio required in the uniform draw implementation) and implements the two pure virtual

methods that were part of the RNG abstract base class:

#ifndef LINEAR CONGRUENTIAL GENERATOR H

#define LINEAR CONGRUENTIAL GENERATOR H

#include ”random . h”

class LinearCongruent ia lGenerator : public RandomNumberGenerator {

private :

double max mult ip l i e r ;

public :

L inearCongruent ia lGenerator (unsigned long num draws ,

unsigned long i n i t s e e d = 1) ;

virtual ˜ LinearCongruent ia lGenerator ( ) {} ;

virtual unsigned long get random integer ( ) ;

virtual void get uni form draws ( std : : vector<double>& draws ) ;

} ;

#endif

The source file (lin con gen .cpp) contains the implementation of the linear congruential gen-

erator algorithm. We make heavy use of Numerical Recipes in C [20], the famed numerical

algorithms cookbook. The book itself is freely available online. We strongly suggest reading the

chapter on random number generator (Chapter 7) as it describes many of the pitfalls with using

a basic linear congruential generator, which is outside of the scope of this chapter. Here is the

listing in full:

#ifndef LINEAR CONGRUENTIAL GENERATOR CPP

#define LINEAR CONGRUENTIAL GENERATOR CPP

#include ” l i n c o n g e n . h”
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// This uses the Park & Mi l l e r a l gor i thm found in ”Numerical Recipes in C”

// Define the cons tan t s f o r the Park & Mi l l e r a l gor i thm

const unsigned long a = 16807; // 7ˆ5

const unsigned long m = 2147483647; // 2ˆ32 − 1 ( and thus prime )

// Schrage ’ s a l gor i thm cons tan t s

const unsigned long q = 127773;

const unsigned long r = 2836 ;

// Parameter cons t ruc t o r

LinearCongruent ia lGenerator : : L inearCongruent ia lGenerator (

unsigned long num draws ,

unsigned long i n i t s e e d

) : RandomNumberGenerator ( num draws , i n i t s e e d ) {

i f ( i n i t s e e d == 0) {

i n i t s e e d = 1 ;

cu r s e ed = 1 ;

}

max mult ip l i e r = 1 .0 / ( 1 . 0 + (m−1) ) ;

}

// Obtains a random unsigned long i n t e g e r

unsigned long LinearCongruent ia lGenerator : : ge t random integer ( ) {

unsigned long k = 0 ;

k = cur s e ed / q ;

cu r s e ed = a ∗ ( cu r s e ed − k ∗ q ) − r ∗ k ;

i f ( cu r s e ed < 0) {

cu r s e ed += m;

}

return cu r s e ed ;



196

}

// Create a vec t o r o f uniform draws between (0 ,1)

void LinearCongruent ia lGenerator : : get un i form draws ( std : : vector<double>&

draws ) {

for (unsigned long i =0; i<num draws ; i++) {

draws [ i ] = get random integer ( ) ∗ max mult ip l i e r ;

}

}

#endif

Firstly, we set all of the necessary constants (see [20] for the explanation of the chosen values).

Note that if we created another LCG we could inherit from the RNG base class and use different

constants:

// Define the cons tan t s f o r the Park & Mi l l e r a l gor i thm

const unsigned long a = 16807; // 7ˆ5

const unsigned long m = 2147483647; // 2ˆ32 − 1

// Schrage ’ s a l gor i thm cons tan t s

const unsigned long q = 127773;

const unsigned long r = 2836 ;

Secondly we implement the constructor for the LCG. If the seed is set to zero by the client,

we set it to unity, as the LCG algorithm does not work with a seed of zero. The max mutliplier is

a pre-computed scaling factor necessary for converting a random unsigned long into a uniform

value on on the open interval (0, 1) ⊂ R:

// Parameter cons t ruc t o r

LinearCongruent ia lGenerator : : L inearCongruent ia lGenerator (

unsigned long num draws ,

unsigned long i n i t s e e d

) : RandomNumberGenerator ( num draws , i n i t s e e d ) {

i f ( i n i t s e e d == 0) {

i n i t s e e d = 1 ;



197

cu r s e ed = 1 ;

}

max mult ip l i e r = 1 .0 / ( 1 . 0 + (m−1) ) ;

}

We now concretely implement the two pure virtual functions of the RNG base class, namely

get random integer and get uniform draws. get random integer applies the LCG modulus algorithm

and modifies the current seed (as described in the algorithm above):

// Obtains a random unsigned long i n t e g e r

unsigned long LinearCongruent ia lGenerator : : ge t random integer ( ) {

unsigned long k = 0 ;

k = cur s e ed / q ;

cu r s e ed = a ∗ ( cu r s e ed − k ∗ q ) − r ∗ k ;

i f ( cu r s e ed < 0) {

cu r s e ed += m;

}

return cu r s e ed ;

}

get uniform draws takes in a vector of the correct length (num draws) and loops over it con-

verting random integers generated by the LCG into uniform random variables on the interval

(0, 1):

// Create a vec t o r o f uniform draws between (0 ,1)

void LinearCongruent ia lGenerator : : get un i form draws ( std : : vector<double>&

draws ) {

for (unsigned long i =0; i<num draws ; i++) {

draws [ i ] = get random integer ( ) ∗ max mult ip l i e r ;

}

}

This concludes the implementation of the linear congruential generator. The final component

is to tie it all together with a main.cpp program.
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14.2.3 Implementation of the Main Program

Because we have already carried out most of the hard work in random.h, lin con gen .h, lin con gen

.cpp, the main implementation (main.cpp) is straightforward:

#include <iostream>

#include ” l i n c o n g e n . h”

int main ( int argc , char ∗∗ argv ) {

// Set the i n i t i a l seed and the d imens i ona l i t y o f the RNG

unsigned long i n i t s e e d = 1 ;

unsigned long num draws = 20 ;

std : : vector<double> random draws ( num draws , 0 . 0 ) ;

// Create the LCG ob j e c t and c r ea t e the random uniform draws

// on the open i n t e r v a l (0 ,1)

LinearCongruent ia lGenerator l c g ( num draws , i n i t s e e d ) ;

l c g . get un i form draws ( random draws ) ;

// Output the random draws to the conso l e / s t dou t

for (unsigned long i =0; i<num draws ; i++) {

std : : cout << random draws [ i ] << std : : endl ;

}

return 0 ;

}

Firstly, we set up the initial seed and the dimensionality of the random number genera-

tor. Then we pre-initialise the vector, which will ultimately contain the uniform draws. Then

we instantiate the linear congruential generator and pass the random draws vector into the

get uniform draws method. Finally we output the uniform variables. The output of the code

is as follows:

7.82637 e−06

0.131538

0.755605

0.45865

0.532767

0.218959
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0.0470446

0.678865

0.679296

0.934693

0.383502

0.519416

0.830965

0.0345721

0.0534616

0 .5297

0.671149

0.00769819

0.383416

0.0668422

As can be seen, all of the values lie between (0, 1). We are now in a position to utilise

statistical distributions with the uniform random number generator to obtain random draws.

14.3 Statistical Distributions

One of the commonest concepts in quantitative finance is that of a statistical distribution. Ran-

dom variables play a huge part in quantitative financial modelling. Derivatives pricing, cash-flow

forecasting and quantitative trading all make use of statistical methods in some fashion. Hence,

modelling statistical distributions is extremely important in C++.

Many of the chapters within this book have made use of random number generators in order

to carry out pricing tasks. So far this has been carried out in a procedural manner. Functions

have been called to provide random numbers without any data encapsulation of those random

number generators. The goal of this chapter is to show you that it is beneficial to create a class

hierarchy both for statistical distributions and random number generators, separating them out

in order to gain the most leverage from code reuse.

In a nutshell, we are splitting the generation of (uniform integer) random numbers from

draws of specific statistical distributions, such that we can use the statistics classes elsewhere

without bringing along the “heavy” random number generation functions. Equally useful is the

fact that we will be able “swap out” different random number generators for our statistics classes

for reasons of reliability, extensibility and efficiency.
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14.3.1 Statistical Distribution Inheritance Hierarchy

The inheritance hierarchy for modelling of statistical distributions is relatively simple. Each

distribution of interest will share the same interface, so we will create an abstract base class, as

was carried out for the PayOff hierarchy. We are primarily interested in modelling continuous

probability distributions for the time being.

Each (continuous) statistical distribution contains the following properties to be modelled:

• Domain Interval - The interval subset of R with which the distribution is defined for

• Probability Density Function - Describes the frequency for any particular value in our

domain

• Cumulative Density Function - The function describing the probability that a value is

less than or equal to a particular value

• Expectation - The expected value (the mean) of the distribution

• Variance - Characterisation of the spread of values around the expected value

• Standard Deviation - The square root of the variance, used because it possesses the

same units as the expected value, unlike the variance

We also wish to produce a sequence of random draws from this distribution, assuming a

sequence of random numbers is available to provide the “randomness”. We can achieve this in

two ways. We can either use the inverse cumulative distribution function (also known as the

quantile function), which is a property of the distribution itself, or we can use a custom method

(such as Box-Muller). Some of the distributions do not possess an analytical inverse to the CDF

and hence they will need to be approximated numerically, via an appropriate algorithm. This

calculation will be encapsulated into the class of the relevant inherited distribution.

Here is the partial header file for the StatisticalDistribution abstract base class (we will add

extra distributions later):

#ifndef STATISTICS H

#define STATISTICS H

#include <cmath>

#include <vector>

class S t a t i s t i c a l D i s t r i b u t i o n {
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public :

S t a t i s t i c a l D i s t r i b u t i o n ( ) ;

virtual ˜ S t a t i s t i c a l D i s t r i b u t i o n ( ) ;

// D i s t r i b u t i o n f unc t i on s

virtual double pdf ( const double& x ) const = 0 ;

virtual double cd f ( const double& x ) const = 0 ;

// Inver se cumula t ive d i s t r i b u t i o n f unc t i on s ( aka the q u an t i l e f unc t i on )

virtual double i n v c d f ( const double& q u a n t i l e ) const = 0 ;

// Des c r i p t i v e s t a t s

virtual double mean ( ) const = 0 ;

virtual double var ( ) const = 0 ;

virtual double stdev ( ) const = 0 ;

// Obtain a sequence o f random draws from t h i s d i s t r i b u t i o n

virtual void random draws ( const std : : vector<double>& uniform draws ,

std : : vector<double>& di s t d raws ) = 0 ;

} ;

#endif

We’ve specified pure virtual methods for the probability density function (pdf), cumulative

density function (cdf), inverse cdf (inv cdf), as well as descriptive statistics functions such as

mean, var (variance) and stdev (standard deviation). Finally we have a method that takes in

a vector of uniform random variables on the open interval (0, 1), then fills a vector of identical

length with draws from the distribution.

Since all of the methods are pure virtual, we only need a very simple implementation of a

source file for this class, since we are simply specifying an interface. However, we would like

to see a concrete implementation of a particular class. We will consider, arguably, the most

important distribution in quantitative finance, namely the standard normal distribution.

14.3.2 Standard Normal Distribution Implementation

Firstly we’ll briefly review the formulae for the various methods we need to implement for the

standard normal distribution. The probability density function of the standard normal distribu-
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tion is given by:

φ(x) =
1√
2π
e−

1
2x

2

The cumulative density function is given by:

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt

The inverse cumulative density function of the standard normal distribution (also known as

the probit function) is somewhat more involved. No analytical formula exists for this particular

function and so it must be approximated by numerical methods. We will utilise the Beasley-

Springer-Moro algorithm, found in Korn[15].

Given that we are dealing with the standard normal distribution, the mean is simply µ = 0,

variance σ2 = 1 and standard deviation, σ = 1. The implementation for the header file (which

is a continuation of statistics .h above) is as follows:

class StandardNormalDistr ibut ion : public S t a t i s t i c a l D i s t r i b u t i o n {

public :

StandardNormalDistr ibut ion ( ) ;

virtual ˜ StandardNormalDistr ibut ion ( ) ;

// D i s t r i b u t i o n f unc t i on s

virtual double pdf ( const double& x ) const ;

virtual double cd f ( const double& x ) const ;

// Inver se cumula t ive d i s t r i b u t i o n func t i on ( aka the p r o b i t f unc t i on )

virtual double i n v c d f ( const double& q u a n t i l e ) const ;

// Des c r i p t i v e s t a t s

virtual double mean ( ) const ; // equa l to 0

virtual double var ( ) const ; // equa l to 1

virtual double stdev ( ) const ; // equa l to 1

// Obtain a sequence o f random draws from the standard normal

d i s t r i b u t i o n
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virtual void random draws ( const std : : vector<double>& uniform draws ,

std : : vector<double>& di s t d raws ) ;

} ;

The source file is given below:

#ifndef STATISTICS CPP

#define STATISTICS CPP

#define USE MATH DEFINES

#include ” s t a t i s t i c s . h”

#include <iostream>

S t a t i s t i c a l D i s t r i b u t i o n : : S t a t i s t i c a l D i s t r i b u t i o n ( ) {}

S t a t i s t i c a l D i s t r i b u t i o n : : ˜ S t a t i s t i c a l D i s t r i b u t i o n ( ) {}

// Constructor / d e s t r u c t o r

StandardNormalDistr ibut ion : : StandardNormalDistr ibut ion ( ) {}

StandardNormalDistr ibut ion : : ˜ StandardNormalDistr ibut ion ( ) {}

// P r o b a b i l i t y d en s i t y f unc t i on

double StandardNormalDistr ibut ion : : pdf ( const double& x ) const {

return ( 1 . 0 / s q r t ( 2 . 0 ∗ M PI) ) ∗ exp (−0.5∗x∗x ) ;

}

// Cumulative d en s i t y f unc t i on

double StandardNormalDistr ibut ion : : cd f ( const double& x ) const {

double k = 1 . 0 / ( 1 . 0 + 0.2316419∗x ) ;

double k sum = k ∗(0 .319381530 + k∗(−0.356563782 + k ∗ (1 .781477937 +

k∗(−1.821255978 + 1.330274429∗k ) ) ) ) ;

i f ( x >= 0 . 0 ) {

return ( 1 . 0 − ( 1 . 0 / ( pow(2∗M PI , 0 . 5 ) ) ) ∗exp (−0.5∗x∗x ) ∗ k sum ) ;

} else {

return 1 .0 − cd f (−x ) ;

}

}
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// Inver se cumula t ive d i s t r i b u t i o n func t i on ( aka the p r o b i t f unc t i on )

double StandardNormalDistr ibut ion : : i n v c d f ( const double& q u a n t i l e ) const {

// This i s the Beasley−Springer−Moro a l gor i thm which can

// be found in Glasserman [ 2 0 0 4 ] . We won ’ t go in t o the

// d e t a i l s here , so have a l ook at the r e f e r ence f o r more i n f o

stat ic double a [ 4 ] = { 2.50662823884 ,

−18.61500062529 ,

41 .39119773534 ,

−25.44106049637} ;

stat ic double b [ 4 ] = { −8.47351093090 ,

23 .08336743743 ,

−21.06224101826 ,

3 .13082909833} ;

stat ic double c [ 9 ] = {0.3374754822726147 ,

0 .9761690190917186 ,

0 .1607979714918209 ,

0 .0276438810333863 ,

0 .0038405729373609 ,

0 .0003951896511919 ,

0 .0000321767881768 ,

0 .0000002888167364 ,

0 .0000003960315187} ;

i f ( q u a n t i l e >= 0.5 && q u a n t i l e <= 0 .9 2 ) {

double num = 0 . 0 ;

double denom = 1 . 0 ;

for ( int i =0; i <4; i++) {

num += a [ i ] ∗ pow ( ( q u a n t i l e − 0 . 5 ) , 2∗ i + 1) ;

denom += b [ i ] ∗ pow ( ( q u a n t i l e − 0 . 5 ) , 2∗ i ) ;

}

return num/denom ;

} else i f ( q u a n t i l e > 0 .92 && q u a n t i l e < 1) {
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double num = 0 . 0 ;

for ( int i =0; i <9; i++) {

num += c [ i ] ∗ pow ( ( l og (− l og (1− q u a n t i l e ) ) ) , i ) ;

}

return num;

} else {

return −1.0∗ i n v c d f (1− q u a n t i l e ) ;

}

}

// Expec ta t ion /mean

double StandardNormalDistr ibut ion : : mean ( ) const { return 0 . 0 ; }

// Variance

double StandardNormalDistr ibut ion : : var ( ) const { return 1 . 0 ; }

// Standard Devia t ion

double StandardNormalDistr ibut ion : : s tdev ( ) const { return 1 . 0 ; }

// Obtain a sequence o f random draws from t h i s d i s t r i b u t i o n

void StandardNormalDistr ibut ion : : random draws (

const std : : vector<double>& uniform draws ,

std : : vector<double>& di s t d raws

) {

// The s imp l e s t method to c a l c u l a t e t h i s i s wi th the Box−Muller method ,

// which has been used p ro c edu ra l l y in many other chap t e r s

// Check t ha t the uniform draws and d i s t d r aws are the same s i z e and

// have an even number o f e lements ( necessary f o r B−M)

i f ( uniform draws . s i z e ( ) != d i s t d raws . s i z e ( ) ) {

std : : cout << ”Draw ve c t o r s are o f unequal s i z e . ” << std : : endl ;

return ;

}

// Check t ha t uniform draws have an even number o f e lements ( necessary
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f o r B−M)

i f ( uniform draws . s i z e ( ) % 2 != 0) {

std : : cout << ”Uniform draw vecto r s i z e not an even number . ” << std : :

endl ;

return ;

}

// Slow , but easy to implement

for ( int i =0; i<uniform draws . s i z e ( ) / 2 ; i++) {

d i s t d raws [2∗ i ] = s q r t (−2.0∗ l og ( uniform draws [2∗ i ] ) ) ∗

s i n (2∗M PI∗uniform draws [2∗ i +1]) ;

d i s t d raws [2∗ i +1] = s q r t (−2.0∗ l og ( uniform draws [2∗ i ] ) ) ∗

cos (2∗M PI∗uniform draws [2∗ i +1]) ;

}

return ;

}

#endif

Some of the implementations are discussed briefly here. The cumulative distribution function

(cdf) is referenced from Joshi[12]. It is an approximation, rather than closed-form solution. The

inverse CDF (inv cdf) makes use of the Beasley-Springer-Moro algorithm, which was implemented

via the algorithm given in Korn[15]. A similar method can be found in Joshi[11]. Once again

the algorithm is an approximation to the real function, rather than a closed form solution. The

final method is random draws. In this instance we are using the Box-Muller algorithm. However,

we could instead utilise the more efficient Ziggurat algorithm, although we won’t do so here.

14.3.3 The Main Listing

We will now utilise the new statistical distribution classes with a simple random number generator

in order to output statistical values:

#include ” s t a t i s t i c s . h”

#include <iostream>

#include <vector>

int main ( int argc , char ∗∗ argv ) {
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// Create the Standard Normal D i s t r i b u t i o n and random draw ve c t o r s

StandardNormalDistr ibut ion snd ;

std : : vector<double> uniform draws (20 , 0 . 0 ) ;

s td : : vector<double> normal draws (20 , 0 . 0 ) ;

// Simple random number genera t ion method based on RAND

for ( int i =0; i<uniform draws . s i z e ( ) ; i++) {

uniform draws [ i ] = rand ( ) / static cast<double>(RAND MAX) ;

}

// Create s tandard normal random draws

// Notice t ha t the uniform draws are una f f e c t e d . We have separa ted

// out the uniform crea t i on from the normal draw crea t ion , which

// w i l l a l l ow us to c r ea t e s o p h i s t i c a t e d random number genera to r s

// wi thou t i n t e r f e r i n g wi th the s t a t i s t i c a l c l a s s e s

snd . random draws ( uniform draws , normal draws ) ;

// Output the va l u e s o f the s tandard normal random draws

for ( int i =0; i<normal draws . s i z e ( ) ; i++) {

std : : cout << normal draws [ i ] << std : : endl ;

}

return 0 ;

}

The output from the program is as follows (a sequence of normally distributed random vari-

ables):

3.56692

3.28529

0.192324

−0.723522

1.10093

0.217484

−2.22963

−1.06868

−0.35082

0.806425
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−0.168485

−1.3742

0.131154

0.59425

−0.449029

−2.37823

0.0431789

0.891999

0.564585

1.26432

Now that we have set up the inheritance hierarchy, we could construct additional (continuous)

statistical distributions, such as the log-normal distribution, the gamma distribution and the chi-

square distribution.


